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INTRODUCTION

The types of serious damage that are most frequently observed in embankment
dams after strong earthquakes can be grouped into the following four categories
in order of increasing frequency of occurrence 9):

1. Longitudinal cracks that develop especially near the crest due either to
tensile stresses caused by the lateral vibrations of the dam or to differential
settlements caused by different degrees of dynamic compaction of various dam
zones (core, shell) or foundation soils.

2. Slides of soil masses from the upstream or downstream slope of the dam
triggered by lateral vibrations that induce along sliding surfaces shear stresses
that exceed, on the average, the shear strength of the soil.

3. Transverse cracks that develop usually near the abutment-dam interfaces
either due to tensile stresses created by longitudinal vibrations of the dam or
due to differential settlements of various sections of the dam in the longitudinal
direction. ,

4. Large displacements or bearing capacity failure due to liquefaction of
saturated cohesionless soils in the dam or the foundation.

Transverse cracking due to longitudinal vibrations is neither as serious damage
as are the large permanent deformations caused by liquefaction or sliding, nor
as frequent a phenomenon as is the development of longitudinal cracks. This
perhaps explains why so little attention has been directed towards understanding
the behavior of earth dams when excited in a direction parallel to their axis.
In contrast, extensive experimental and theoretical research has been related
to lateral vibrations of earth dams or embankments (1,2,3,4,5,7,9). '

' Asst. Prof. of Civ. Engrg., Case Western Reserve Univ., Cleveland, Ohio 44106.

Note.—Discussion open until June 1, 1981. To extend the closing date one month,
a written request must be filed with the Manager of Technical and Professional Publications,
ASCE. Manuscript was submitted for review for possible publication on December 18,
1979. This paper is part of the Journal of the Geotechnical Engineering Division, Proceedings
of the American Society of Civil Engineers, © ASCE, Vol. 107, No. GT1, January,
1981. ISSN 0093-6405 /81/0001-0021/$01.00.

21



22 | JANUARY 1981 GT1

- However, transverse cracks can be potentially very dangerous since they
can induce uncontrolled seepage through the dam and thereby create piping
failure(s). Such cracks are highly probable to occur especially at the contact
surfaces of an embankment dam with its steep-sloping rock abutments, because
of the different dynamic response of the two media, and because no tensile
forces can develop between them. The 1/16-in. wide (1.6 mm) lateral crack
which occurred at the east abutment of the Santa Felicia Dam during the San
Fernando Earthquake of February 9, 1971, as reported by Abdel-Ghaffar and
Scott (1) seems to have been of this nature.

The contact areas between soil and outlet works such as side spillways,
sluiceways, and buried pipes are also vulnerable to tensile longitudinal stresses.
Furthermore, cracking and ruptures of pipes observed after earthquakes have
been attributed to the incompatibility of their displacements with the larger
longitudinal deformations of the surrounding soil (9). Since many of these damages
occur within the body of the dam and can easily remain undetected they may
cause additional problems in the post-earthquake life of the structure. Conse-
quently, experimental and theoretical research on the behavior of embankment
dams during earthquake-induced longitudinal vibrations is urgently needed to
develop methods of analysis, establish performance criteria, improve current
design procedures, and invent rehabilitation techniques to ensure the safety
of new or existing earth and rockfill dams during and after earthquakes.

As a first step in the aforementioned direction, this paper presents a theoretical
analysis of free and forced vibrations of embankment dams. The method accounts
for both dilatational and shear deformations and models the dam as a linear
homogeneous triangular prism, bounded in the longitudinal direction by two
vertical planes (rectangular canyon). Numerical results are presented for the
natural frequencies, modal displacement, modal strain shapes, and modal parti-
cipation factors. It is shown that in relatively long dams shear deformations
are more important than axial deformations, whereas the reverse is true with
dams that are built in narrow canyons. Two case studies are then presented
in order to evaluate the ability of the presented theory to explain with reasonable
accuracy observed field behavior. Natural frequencies, participation factors,
and mode shapes computed with the theory for the Santa Felicia Dam in California
and the Kisenyama Dam in Japan are examined in the light of observed
predominant frequencies and peak response amplitudes of motions recorded
during actual earthquakes (1,9). Finally the method is extended to approximately
account.for a realistic variation of shear modulus at various depths below the
crest of the dam.

AnNALysis FOR Homogeneous Dam IN RectancuLar Canyon

Free Vibrations.—Let x, y, and z be the orthogonal coordinates of any point
in a symmetrical earth dam built in a rectangular canyon, as shown in Fig.
1(a). To derive the governing equation of motion the simplifying assumption
is made that normal and shear stresses, o, and 7, , are independent of y and,

zx

_therefore, that o, and 7, are uniformly distributed over infinitesimal areas b, -dz
- and b, -dx respectlvely, as shown in Fig. 1(b). This assumption is remmlscent
- of the hypothesis of uniform shear stresses t,, over areas b,-dx that is the

basis of the shear-beam theory for lateral vibrations (3,4,7,9). It seems, however,
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that the present hypothesis is more realistic since it does not violate the physical
requirement of zero shear and normal stresses on the upstream and downstream
faces of the dam, in contrast with the shear-beam assumption.

As a direct consequence of the foregoing assumption, the horizontal displace-
~ments are considered independent of Y, ie, u = u(x,z;t). The differential

(b)

FIG. 1.—(a) Dam Geometry in Perspective; and (b) Longitudinal and Cross Section
of Dam: Stresses Acting on Infinitesimal Body

equation that governs the spatial and temporal variation of u is subsequently
derived from the dynamic equilibrium of an infinitesimal body of volume b, - dx - dz
[Fig. 1()]: g1 .

.1 9 du d du
pu — — G:z — E R LE O (1)
Z 9z dz ax ax

in which G and E = the shear and Young’s moduli of the soil, herein taken
as constants throughout the dam. The three terms in Eq. 1 express respectively
the inertia, shear, and axial forces acting on the said infinitesimal body.
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Solutions of Eq. 1 would be physically acceptable only if they satisfy the
boundary conditions:

{0, 2; 1) B |rinosiied. 24 80IQELIZE ST DREFOE B RN (2)

C1E M 14 3 4L - aeibae AR AN B Tt e T R (3)

Ml H 1l e el Ja g vl d e b os boads g alea e e s ks 4)

Giu(x,z;t)jl M | v b e e g el wly m s ow oy s me e w ok (5)
9z 2=0

that express the requirements of zero relative displacement between dam and
supporting canyon and of zero shear stresses at the crest.
To solve Eq. 1, let

u=P)Tx)exp(iwt) . . . .« v i e e e e e e e (6)

]1/2

and call £ = w/C, in which the S-wave velocity is C'= [G/p . After some

mathematical operations Eq. 1 becomes

, 1 d [ do 1 d*v |

k? + z =2 EW) e L i i e e e ()
z® dz dz ¥ dx

Each of the terms in Eq. 1 is a constant, a’, since the first term is a function
of z only and the second term a function of x only. Thus

d*v a’ -
= s ERI R . . o . s 5 v R W N E v e v

dx? 2(1 +v) :
d’® 1 do _ :

and + — +k*-aH)® =0 ..........7....:...09
dz? z dz

The general solutions of Egs. 8 and 9 that sausfy the boundary Eqgs. 2 and
5 are respectively:

Wom B BB v oo vomiiv sk b E e e YL D 5 & ee (10)
a2
2
e R 11
7 2(1 + v) (n
and ®=B"J,(bz) ... ...... EERR A i Ll (12)
PP =k"—a@" . ... ... ciiinn o ybolitmizen i a0 priind e s (13)

in which B’, B” = integration constants; and J, (1) = Bessel Funcnon of the
first kind and zero order.

Enforcement of the other two boundary conditions (Eq. 3 and Eq. 4) leads
to

2(1 +v)] 2 Y :
a=[( 2 & R L T M B SRR W P U O L DICTREL § L
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in which S, = the roots of J,(S) = 0, e.g., S, = 2.4048, S, = 8.6530, etc.
The natural frequencies for longitudinal vibrations are then obtained by combining
Egs. 13, 14, and 15:

: C H\?2 1/2
(”b"'nr-"—_‘-E’:Si+2(l +v)'rrz<z-> r{' e P AL pitera Fuimdend- gt B (16)

while the displacement shapes, normalized to a unit peak amplitude, are given
by

z x
U=\ S,— |sin|lrm—) ... ... ... ... . . . RN R (17a)
H L

U, = U, exp(io,t), nr=1,2,3 ... ... .. .. .. .. ... .. . (17b)
and the normal and shear strains by
ou, rm z X
€, = Py = TJO <S,, }1—) ?OS (r'n' Z—) exp(iw,, t) . .. ... ..... (18)
au,, S, z b |
Yix,, = = = P 4 (S,, E) sin <r'n' Z) exp (iw,, ). . . . ... .... (19)

Earthquake-Induced Vibrations.—During earthquake shaking that consists
exclusively of vertically propagating S-waves polarized in the x direction, the
longitudinal motion of the dam relative to the surrounding canyon is described

by

1 o du d du B
pit — — Gz - E et o0 P (20)
Z 9z 9z ax ox

in which #_ () = the ground acceleration (in the x direction), and by Egs.
2, 3, 4, and 5 (boundary conditions). The solution is obtained by modal
superposition (8):

u(x,z; 1) = > S T URDBAY . - oo, e s 21)

n=1,2 r=1,2
whereby, the modal participation factor I,, of the n, r mode is

H L
S S U,y -dx-dz
0 0 8

o o .l e 22
Efs wrS,J,(S,) 5
U, 'y-dxdz

0 0

while the modal response D,,(¢) is obtained from the Duhamel integfal:

1 t
D"'(t)=TS i (0) €xp (=B, (t =p)] s [0t = p)] dp .. .. (Ba)

nr
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NumericaL ResuLTs

Fig. 2 demonstrates the relationship between natural frequencies, w,,, of a
homogeneous dam in a rectangular canyon and the key geometric parameter,
i.e., the length-to-height ratio, L/ H. Specifically, Fig. 2(a) shows the decrease
of the fundamental frequency-ratio, w,, H/C, as L/ H increases, for two values

W3 I — m N -

T7T7TIITTT

11

L/ H

(b)

FIG. 2.—Dependence of Natural Frequencies on Length-to-Height Ratio

of Poisson’s ratio, v = 0.30 and v = 0.5. One can clearly distinguish two regions
in the frequency-ratio spectrum, corresponding to ‘‘narrow’’ or ‘‘wide”’ canyons,
respectively. When L/H is less than about 1.5 (‘‘narrow’ canyon) w, H/C
is inversely proportional to L/H, whereas when L/H is greater than about
2 (“wide” canyon) w,, H/C is practically independent of L/H. The following
expressions can be derived from Fig. 2(a) for the fundamental period in
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longitudinal vibrations of “‘narrow’’ or “long” dams:

o

- £ L
PRS0 = B B8 sk 4k ehaon o sla i franon m med (24a)
S # C
g¢te 1 H I :
Bl Py 28— for —23 L vt e ke (24b0)
C H

Eq. 24a states that, for a narrow dam, T, is independent of the height,
H, and is only a function of the length, L, and the S-wave velocity, C. This
result can be compared with the fundamental period in axial vibrations of a
uniform rod fixed at both ends and having a Poisson’s ratio v = 0.40:

L
Ty=119— ", .. ... P B 5, x b & & S e (25a)

The similarity of Eq. 24a and Eq. 25a suggests that axial deformations are
more significant than shear deformations in narrow dams.

The reverse appears to be true in long dams; T, depends only on the height,
H, of the dam and Eq. 2 is reminiscent of the fundamental period of a two
dimensional wedge-shaped beam due to lateral shear vibrations (3,4,7):

H %
Py M s L e e AT R e ek B n R x e h L (25b)

Therefore, shear deformations are more important than axial deformations in
relatively long dams.

Another way of studying the relative significance of axial versus shear
deformations is by considering the peak-strain ratio

maxe,
i O O (26)
max ’Y zx,nr

From Eqgs. 18 and 19:
H
(SR), =3.10 R T (26a)

which also demonstrates that as the canyon becomes wider (H/L decreases)
the importance of shear deformations increases.

Notice also in Fig. 2(a) and in Eqgs. 24 that Poisson’s ratio, v, has a practically
negligible effect on the fundamental frequency. Also negligible is the influence
of v on the higher frequencies. Only results for a typical value of v = 0.40
are thus shown hereafter, except when otherwise stated. ,

Fig. 2(b) portrays the variation with L /H of the ratio w,,/w,, of six higher
frequencies (n, r = 1, 2, 3, 4) over the fundamental frequency. Two conclusions
can be drawn: (1) Successive natural frequencies are very close to each other,
€.g:, a-dam with L/H = 2 has v, = Wy = 1.60 0, w; = 1.40 w,, o,
=1.06 w,,, etc., therefore, in general, no reliable estimate of response parameters
can be obtained through empirical combination(s) of the maximum modal
responses that are determined from a design spectrum (8). Instead, superposition
of time histories of modal responses (as Eq. 21) must be performed; and 2)
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the ratio w,,/w, is an increasing or decreasing function of L/H depending on
whether n is larger or smaller than r. When n = r, the ratio [not shown in
Fig. 2(b)] has an approximately constant value, i.e., independent of L/H (e.g.,
Wy /Wy, = 2.15, o,/ w,, = 3.30, etc.).

Finally, Fig. 3 shows in perspective the deformation of an earth dam in the

MODE (1,1) MODE (1,2)

FIG. 3.—Distortion of Dam Vibrating in Two Natural Modes (perspective)

MODE MODAL DISPLACEMENTS MODAL STRAINS rnr

(n,x) V() $(z) e:x(x)/_l Y, (2
WLokd \/ |;/ 2.04
2.04

(2,1) /} 1.36
: e Q[/ [ A> i

=g Aysusl
ST

FIG. 4.—Modal Displacement and Modal Strain Components of First Two Symmetric
and First Two Antisymmetric Modes

(1,2)

(2,2)

first two symmetrical modes of longitudinal vibrations [(1,1) and (2,1)] and
Fig. 4 displays the x and z components of modal displacement shapes with
the corresponding axial and shear components of modal strain shapes and the
mode participation factors. It can be seen that maximum axial strains (which
are of major concern with longitudinal vibrations) develop at the crest level
of the abutment dam interface. Significant contributions to these strains come



GT1 EMBANKMENT DAMS 29

from both symmetric (» = 1) and antisymmetric (r = 2) modes of vibration.
Maximum shear strains develop at points with x = L/2 (middle section) and
depth z ='0.75 H or 0.34 H etc. depending on the mode of vibration (n =
1 or 2 etc.).

Case Stupy |: Santa Feucia EArTH Dam

" Abdel-Ghaffar and Scott (1) have réported the analyses of two “‘complete’’
records of the response of Santa Felicia Dam in Southern California during

LONGITUDINAL SECTION

'equivalent' rectangular

canyon

CROSS-SECTION

83m

(] location of
; accelerographiS///jj>
FIG. 5.—Santa Felicia Dam (1)

the San Fernando Earthquake of February 9, 1971 (M = 6.5, R = 33 km)
and the Southern California Earthquake of April 8, 1976 (M = 5, R = 14

existing stream gravels

UPSTREAM

PLAN

/ ) r_j)\UTLET

WORKS ‘ DOWNSTREAM
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km). Santa Felicia Dam is a modern rolled-fill embankment whose geometric
characteristics are shown in Fig. 5 (reproduced from Ref. 1). The dam, located
65 km northwest of Los Angeles, is approx 83 m high above its lowest foundation,
61 m above the original stream bed, and 390 m long at the crest. It has a
central impervious core and pervious shells upstream and downstream. All
materials are of alluvial origin. 2

TABLE 1.—Comparison between Computed and Observed Natural Frequencies and
Part|C|pat|ons Santa Fellcla Dam Cahforma

Southern
San Fernando California Computed
Earthquake: Earthquake: (L=2783m, H=172m,
February 9, 1971 April 4-8, 1976 C = 230, v = 0.45)
Frequency, Frequency, Frequency, Mode
in hertz A/A in hertz A/A |, in hertz | P n,r
(1) (2) (3) (4) (5) (6) (7)
1.35 1.00 1.27 1.00 1.411 1.00 1, 1
1.70 0.61 1.66 0.67 — — —
1.86 0.62 1.86 0.73 1.864 0.500 i, 2
2.15 0.44 2.15 0.38 — — —
2.32 0.62 — — 2.440 0.333 1,3
291 - 0.53 2.64 ~0.38 2.893 0.655 2, 1
— — 3.069 0.250 1, 4
3.15 0.53 -3 22 0.91 3.140 0.332 2,2
3.49 0.49 — — 3.512 .| 0.222 2,3
385 | 0.34 3.71 055 3.725 0.200 1, 8
4.03 0.43 4.20 0.79 3.975 0.166 2,4
—_ — — — 4.396 0.167 1, 6
4.42 0.36 4.59 0.44 4.456 0.531 3,1
— — — : — 4.501 0.133 2, 5
— — — — 4.619 0.266 3,2
4.88 0.75 — — 4.880 0.177 3,3
— — r— — 5.070 0.111 2,6
— —— — — 5223 0.133 3,4
5.44 0.39 5.57 0.79 5.634 0.106 3. 5
6.10 0.17 6.05 0.54 6.037 0.455. | 4,1
— bl | ks — — 6.098 0.098 3,6
— — — — 6.158 0.228 4,2
— — 6.93 0.92 6.952 0.091 4,5
7.91 0.18 7.52 0.40 7.624 0.405 5,1
— — 9.96 0.83 9,838 0.153 6, 5

*A = peak amplitude of the crest /abutment amplification spectrum.

Following the two earthquakes, comprehensive full-scale dynamic tests were
carried out, including mechanical, ambient, and hydrodynamically-induced vibra-
tions (2). Moreover, geophysical tests were performed to obtain representative
low-strain values of key soil parameters such as shear-wave velocity (or shear
modulus) and Poisson’s ratio (1). Wave velocity estimates were also obtained
from observed resonant frequencies of lateral vibrations, utilizing cexisting
shear-beam theories (3,7). It was suggested that the average velocity of the
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Santa Felicia dam lies between approx 220 m/sec and 270 m/sec, while a
Poisson’s ratio equal to 0.45 seems reasonable.

An ‘“‘equivalent’’ dam in a rectangular canyon shown in Fig. I(a) is chosen
to approximate the actual dam geometry. Its dimensions are: L = 2783 .m
and H. =72 m. Shear-wave velocity is taken equal to 230 m/s, i.e.; near the
lower bound of the suggested range, as is appropriate for relatively strong
earthquake motions that are analyzed here.

The ratios of Fourier Spectra, l.e., Amplification Spectra, computed from
the two pairs of parallel-to-the-dam-axis components of motions that were
recorded at the middle of the crest and the right abutment during the two
earthquakes, provide useful information regarding the natural frequencies of
the dam in longitudinal vibrations. They also offer a qualitative picture of the
degree to which various natural modes participate in the shaking. Table 1
summarizes this information (obtained from Ref. 1) in the form of natural
frequencies, £, and ratios of peak amplitudes, 4 /A4 ,,. Also shown in this table
are the natural frequencies and mode participation factors computed with the
theory presented herein (Eq. 16 and Eq. 22) using the aforementioned values
for the material properties and geometry of the dam.

The agreement between predicted and observed natural frequencies is for
all purposes satisfactory although some of the predicted higher frequencies are
not observed in the recorded motions. Notice, however, the relatively small
participation factors of these frequencies.

Direct comparison between ratios of peak amplitudes (4,,/A4,,) of an ampli-
fication spectrum and ratios of participation factors (I',,/T,,) cannot be made
Because as it can be seen from Eq. 21

Anr Fnr D’ll‘(t)l max
All rll Dll.(t)lmax

and, unless D, (¢) |,.. = D\ (t) | max» the aforementioned two ratios will be
different. Nevertheless, one can qualitatively state that the relatively large
participation factors predicted by this theory for some of the higher modes
of vibration are in accord with the large peak amplitudes of the amplification
spectra at the corresponding frequencies.

In conclusion, the presented simple theory of longitudinal vibrations of
homogeneous earth dams in rectangular canyons explains with reasonable
accuracy the observed behavior (natural frequencies, participation factors) of
the Santa Felicia Dam during two Californian earthquakes.

Case Stupy II: Kisenyama RockriLL Dam

Okamoto (9) reports the motions recorded during a 1969 Earthquake by a
number of seismometers that had been installed at the crest, slope, interior,
and abutments of the Kisenyama rockfill dam, in Japan. The dam is 95 m

high, 255 m long at the crest, and is founded on rock. Fig. 6(a) shows a longitudinal

and vertical. cross section of the dam, while Fig. 6(b) shows the parallel-to-the-
dam-axis motions recorded at the ground (point _1), at the center of the crest
(point 2), and at 25 m below the crest in the clay-core (point 3). The earthquakes
occured at the northwestern part of the Giru Prefecture on: September 9, 1969,
shortly after construction of the dam had been completed. Visual examination
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of the records reveals that essentially only the fundamental and a few higher
modes of the dam are excited; the motions (at point 2 and point 3) are very
nearly sinusoidal with an average period 7' = 0.42 sec. Also apparent is the
huge amplification of the motion at the crest (point 2), whereas at a relatively
shallow depth of approximatelyt(1/3) H from the crest (point 3), the motion
is only moderately higher than the ground motion (point 1). The distribution
with depth from the crest of the peak recorded accelerations is depicted in
Fig. 6(c) (black points).

(a)

® location of seismometers

'equivalent' rectangular canyon

(b) (c)

PEAK ACCELERATION: g

%0 0.08
o 0 .04 .08
= 0.0 T T =8
o 4
~ 0.08 location 2
D
& ' - [ ]
< P
" 0 O'3*'\~A~\f\ﬁa4-~\/\/\,A¢\Am¢mf«j\A/\/\VAHA/LA,¢~v\f**~
5] '3 . T 504
4 location 3 H
=]
& (m) [
& [ ]
< 0.0 WWW“VVWW 100[_

location 1

TIME: SECONDS

L I I 1 i L 1 1 1 1 Y Al

0 5 10

’

FIG. 6.—Kisenyama Rockfill Dam: (a) Geometry; (b) Accelerograms in Dam and on
Ground; and (c) Variation of Peak Acceleration with Depth from Crest

Similar trends are observed in the normal-to-the-dam-axis records (shown
in Ref. 9): (1) Nearly sinusoidal motions with an average period T = 0.48
sec; and (2) large amplification of the motion near the crest. sk

Estimation of S-Wave Velocity.—On the basis of the observed fundamental
period T = 0.42 sec, the theory of longitudinal vibrations of embankment dams
presented in this paper can establish an ‘‘effective’’ value of the average S-wave
velocity, consistent with the experienced level of shear deformations during
this particular earthquake. This velocity can then be utilized to explain the
actual response of the dam. ' & : ;
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An ‘‘equivalent”” dam in a rectangular canyon is chosen to approximate the
actual geometry, as sketched in Fig. 6(a). Its dimensions are L = 168 m and
H = 82 m. Poisson’s ratio is taken as v = 0.25. This is believed to be a
representative value for rockfill dams immediately-after construction, i.e., before
the water of the lake has saturated the clay core. ,

- Now, substituting 7', = 0.42 sec and the aforementioned geometric and material
properties in the frequency relation (Eq. 16) gives:

2 H H\* |72
C= Sf+2(1+v)w2<—-> ]
T, L ,

2% [ 2.405)% + 2(1.25 2< 52 )2 ]_”2 28
=~ 0.42) (2. )"+ 2(1.25m e SRS RSPV (28)

or C = 359 m/sec. The theory of lateral shear vibrations of embankment dams
in a rectangular canyon (3,7) is subsequently used in connection with the observed
fundamental period T = 0.48 sec to check the accuracy of the preceding value
of velocity. Solving for C, the corresponding frequency equation, e.g., Eq.
12 in Ref. 3, one obtains:

2nH | o (H\*|TV? 2m(82) s af 32 Y 74
C= St+m | — =——— | (2.405)" + | — (29)
Ty L 0.48 168

or.C = 375 m/sec. The two backfigured values of C are in fairly good agreement
with each other (difference =4%). Moreover, 359 m/sec-375 m/sec is a realistic
range for the S-wave velocity of a rockfill dam experiencing moderate levels
of excitation (=0.10 g peak-crest acceleration in the lateral direction; and =0.07
g in the longitudinal direction).

The natural periods of the two higher symmetric modes of vibrations are
obtained by means of Fig. 2(b) (or through Eq. 16):

T, =—u 0.25 sec (30a)
R g URBOE LT v @ m e w v mae s B E e e s wn e a
168
T, = 0.16 sec | (30b)
e =Ol6mee L e,

One can easily identify these two modes with some of the peaks of the recorded
motions, e.g., the crest accelerogram (point 2) at time ¢ =~ 2 sec and in the
time interval between 4 sec and 5 sec consists of cycles having periods around
0.20 sec. Note, also, that the higher antisymmetric modes [(1,2), (1,3), etc.]
have a negligible contribution to the motion of points 2 and 3 because they
are located close to the central cross section of the dam, i.e., at x = L/2.
Distribution of Peak Responses along Height of Dam.—To explain the sharp
increase of the motion near the crest of the dam in comparison with the motion
at a depth of only 25 m (=0.305 H) from the crest, one can use the presented

theory to compute the acceleration ratio

max u, (¢ ' \
AR = X () ASHPATISS 1B0IISg il & AL BOE 24 i bagalsvsh vl 31)
max u,(t) : ;
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The acceleration time histories at points 2 and 3, ii, (t) and #, (¢ ), can be numerically
obtained by -means of Eq. 21 after evaluation of the Duhamel integral (Eq:.
23). Unfortunately, however, the ground.record i, (¢) is not available in digitized
form -and in order to roughly estimate AR the response spectrum approach
(8) 1s used with the following two simplifying assumptions: (1) Only the first
three symmetric natural modes (n = 1, 2, 3; r = 1) participate in the motion;
and (2) the spectral accelerations, S,, that correspond-to each of the three
first natural periods are all equal. The first assumption is by no means arbitrary,
as it is evident from the appearance of the two accelerograms and the previous

TABLE 2.—Predictions of Peak Acceleration Distribution in Kisenyama Rockfill Dam
in Japan (9)

~ Rule of Comb;n‘l-ng ASSUMPTION: S (Tll) = Sa(TZI) = Sa(TBl) =S,
Modal Maxima "HOMOGENEOUS' THEORY "INHOMOGENEOUS ' THEORY
No| Expression max u, maxugi  ap . maxu, - WAX U, AR
S S . S S
g . . a . a 3 : a
3
1 E Qi 2.67 1.86 1.43 3.46 1.46 .9
i=1 '
3 o | : B
Q;Q.
29[ ) o2 +ZZ—21 2.61 1.82 | 1.44 |. 3.36 1.43 .| 2.33
' b Mg Dby !
i=1 1=y "5 ‘ e o
3 ‘
1..
3| q+i ZQZ 2.90 2.06 1.40 3.41 1.62 2.10
1 2 i
i=2
ASSUMPTION: 'S_(T,;) = S, (T;;) = 2°8_(T;;) =°2°S_
3
1 Z Q? 3.99 | 2.11 | 1.88 6 1.67 . | o9¥ss
: i n
i=1
OBSERVED RATIO: AR = 2.34
_ .
w! - w! : 1/2
i 3 2 ' 2
* g ——d— | pgl=pg 4, Wl o=uw [1-87] [Ref.7 ]
1] ' * 8w i : mit 3 i 1 it

analysis regarding the natural periods of the dam. However, since the details
of the response spectrum are unknown, the second assumption can only be
con51dered as a crude, although reasonable, 51mp11f1cat10n Its justification stems
from the observation (8,9) that usually damped acceleration spectra exhibit a
more or less constant value in the period range between 0.16 sec and 0.42
sec, 1.€., in the range of the three natural periods of interest. This would especially
be so for the large value of critical damping ratio (of the order of 5%-10%)
that most probably developed in the soil during this particular earthquake.

For each of the two points (2 and 3) the maximum acceleration due to each
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of the three symmetric modes is obtained from 1- :
@ e =1 JBPLg 3 BYWFNg §I0990T L0 L) 3310w Sl <l (32)

in which the participation factors, I',,, and modal shapes, U,,, of the (n,1)
mode are obtained from Egs. 22 and 17, respectively. The individual modal
maxima are then combined by three empirical rules to provide an estimate
of the overall expected peak accelerations. Table 2 displays the results and
explains the expressions of the three rules. The ‘‘square root of the sum of
the squares’” (SRSS) is the most popular of these rules (8,9) but it probably
overestimates the total-peak response in this case because of _the proximity
of the natural frequencies of the dam (a phenomenon already addressed in
a previous section). The second rule, suggested by Rosenblueth (8), is perhaps
more appropriate since it accounts for the interaction between modal contribu-
tions. Finally, the third rule attempts to reflect the greater importance of the
fundamental mode, as seen in the two records. ‘

The results of Table 2 demonstrate that the simple theory of longitudinal
vibrations, as presented so far, cannot adequately explain the observed high
amplification of the seismic motion near the crest. All three rules yield quite
similar acceleration ratios not exceeding 1.44, which is only 60% of the ratio
of recorded peak accelerations: 0.68/0.29 ~ 2.34. Of course, one might argue
that higher spectral accelerations at the second and third periods (0.25 sec and
0.16 sec) would have favored the corresponding higher modes and, thus, led
to prediction of sharper near-crest amplification: Nevertheless, even if one
assumes S,(T,,) = S,(T,,) = 2-S,(T,,), the resulting acceleration ratio ‘will
not exceed the value of 1.88 (shown also in Table 2). Larger differences in
the spectral accelerations (than the factor 2 implies) are highly improbable given
the relatively large amount of damping the dam must have experienced during
the earthquake. After all, the two records bear no evidence whatsoever of
any predominance of the higher modes. Note, furthermore, that lateral vibrations
‘exhibited a similarly sharp amplification near the crest (8), as mentioned
previously, although the corresponding natural periods (0.48 sec, 0.235 sec,
and 0.158 sec) differ somewhat from the periods of longitudinal vibrations.

In conclusion, the simple theory that was previously presented cannot explain
the distribution of peak responses along the height of the dam. It is believed
the soil inhomogeneity, which the theory does not account for, is the primary
factor that causes its failure.

SimpLE MoDEL THAT ACCOUNTS FOR SoiL INHOMOGENEITY

Shear modulus even within a uniform mass of soil is not constant but increases
approximately as the square-root of the effective normal octahedral stress: G
~ (04)'/%. Plane-strain finite-element analyses of the static stress distribution
in typical dam cross sections (Ref. 5) suggest in a reasonably consistent way
that, with good accuracy, the average o, across the dam width is an increasing
function of the distance from the crest:

................................... (34)

Thus, it appears that the average shear modulus across the .Wi‘dth of a ‘dam
increases as the two-third power of the depth z. The result of geophysical

/ 4/3
Og~ 2
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investigations on numerous earth and rockfill dams in the United States and
Japan have confirmed this form of variation of soil stiffness in embankment-type
dams (5 6). The writer (4,5) has recently presented a theory of lateral shear
vibrations of earth dams whose modulus varies in proportion‘to z*/>. Successful
evaluation of this theory in the light of recorded tesponses of several dams
from United States, Japan, and Yugoslavia during earthquake, forced, and ambi-
ent vibrations (5,6), offers additional 1nd1rect evidence of the approprlateness
of Eq 34, : v

It is concluded that embankment dams are inhomogeneous in the vertical
direction. It would, therefore, be necessary to modify the presented theory
of 10ng1tud1na1 vibrations in order to account for an S-wave velocuy that increases
with depth accordmg to:

C 2\ /3 _ . “ : :
E—=<E> ................ B A R (34)

m

in which C,, = the velocity at the base of the dam, ie.,atz= H.

Exact analytical solution of the governing diff erential equation of free vibrations
(Eq. 1) is impossible if the soil properties are described by Eq. 34 and by
a constant Poisson’s ratio. A simple approximate solution can, however, be
obtained by heuristically combining the solution of two extreme cases: (1) The
case of a ‘‘very’’ long dam; and (2) the case of a ‘‘very”’ narrow dam. As
explained previously (Egs. 24 and 26), shear deformations are predominant in
case 1, whereas axial deformations are predominant in case 2. Accordingly,
in the first case, Eq. 1 is mmphfled to

W g 1 -d do
— o, P = —— LGz 8

z dz dz
( , 7\ 2/3 T ;
with G=G@E)=pC?’=pC? (;) .................. (35)
and in the second case to
: | 2 = d*v -
—pw \I'zl2(1+v)de2 ROV Ig AEW HBEI VIG5 i) (36)

with G = (6/7)% p C?, being the average shear modulus.
The exact solution of Eq. 35 that satisfies the boundary conditions (Eq. 4
and Eq. 5) is

D, (z2) = sinmynmw| 1—|— s BEmL A 3 e wonrs mrler o 37
o esafee[ - (2)]) -

and the corresponding eigenvalues are

Tm C '
@, suresrrtthe B ER, el adl 22qu0s, (0 JRSIOYE ] QEIPRE, 0e3 INAE)
9 H

in which C = (6/7) C,, is the average S-wave velocity. The reader is referred
to Ref. 4 for a detailed derivation of this solution. Direct 'substitution of Eq.
37 and Eq. 38 in Eq. 35 is, however, sufficient to convince of its correctness.
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The solution of Eq. 36 and the corresponding and eigenvalues are

g v g
= Si T F 5 5% 5 5 s wom o om' winls m e E e i #C ww a'd 39
¥ (x) = sin <r 7 > | | | ( )

_ & | - .
w, =7 [2(1 + )] ‘/"‘Zr; A A T LR & A (40)

In heuristic fashion, guided by the form of Egs. 16 and 17, one can combine
Eqs. 37-39 and Egs. 38-40 to obtain approximate general formulas for the
longitudinal mode shapes and natural frequencies of an embankment dam whose
moduli increase with the 2/3 power of depth:

1 2/3
Z rix
[, = = sin {n'rr {l — <1}—> }} sin ( 3 > .............. (41)
zZ

C T 2 H\? = 1
wnrz_[<_ n) +2(1 +V)1T2<_—) rz} ; n’r= 1’2’ 3’ g ce e W (42)
H[L\9 | L

The modal participation factor due to earthquake shaking that consists of vertically
propagating waves is also given here:

Notice that despite its approximate character, the preceding solution is exact
in the two limiting cases of L/H — 0 (narrow dam) and of L/H — oo (long
dam). It is moreover believed that for intermediate ranges of the L / H ratio,
Egs. 41 and 42 describe the behavior of the dam more accurately than Egs.
16 and 17, since the former capture both the two dimensional character of
the response and the inhomogeneous nature of the material properties.

Comparison of Eq. 42 and Eq. 16, portrayed in Fig. 7(a), reveals that the
two theories (hereafter referred to as ‘‘homogeneous’ or “‘inhomogeneous’”)
predict very similar natural frequencies. The maximum discrepancy between
fundamental frequencies is only 1.6%, in the extreme case of L [H = oo it
tends to zero as L/H decreases. Larger discrepancies are observed with the
higher modes, as the inhomogeneous theory predicts frequencies that are closer
to the fundamental frequency, in comparison with the higher frequencies of
the homogeneous theory (Eq. 16), e.g., for a very long dam Eq. 42 yields
Wy W3,

— =2 and — =3 .. .. ... (44a)

Wy, Wy,

whereas Eq. 16 gives

As, however, L/ H decreases, the discrepancies become insignificant converging
to zero for L/H — 0 [Fig. 7(a)]. 4

The important difference between the two theories lies in their mode shapes.
As shown in Fig. 7(b), the inhomogeneous theory (Eq. 41) leads to a sharp
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deamplification of ' modal displacements with depth, not anticipated by the
homogeneous theory (Eq. 16). This discrepancy is not decreasing with L/H,
although its consequence on the shear-strain /axial-strain ratio is, indeed, dimin-
ishing as the dam becomes narrower.

Reinterpretation of Kisenyama Dam Records.—The new theory appears to be
able to explain the sharp increase of motion near the crest of the Kisenyama
rockfill dam during the September 9, 1969 earthquake.

‘ta) 7

—
]
o —
g 9 n=1
) 8 1.0 =
2
o 9]
[} o
=] o
) )
&0 =]
fo (]
= )
e} Qo
£ =1 4 2
A 2 0.9 n -
‘4-" Yy
O} ) 5w 3
) =
3 3
0.8 | | | | L
0 1 3 3 4 5 6
L./ K
b
(b) 8
. n=1 n=2
.@\@“%
B42 |- / 37 “0\1\00 /
/ ' e /
g <
REO
0.4 / 5 | o®
74 / AW
W s~ 7 Zeiady
I - L /
0.6 Q\D‘\oc’ {Q% (
) 4,@
Q
0.8 /Q\OQ\ — \
1.0 1 L | 1 : | \ |
0 0.2 0.4 0.6 0.8 130 <0.5 0 0.5 1.0
MODE SHAPE: ¢ MODE SHAPE: ¢
1 2

FIG. 7.—Comparison of: (a) Three Natural Frequencies; and (b) Vertical Components
of Two Mode Shapes Obtained with Homogeneous (Egs. 16, 17) and Inhomogeneous
Models (Egs. 41, 42)

First, using Eq. 42 instead of Eq. 16, the effective S-wave velocity of the
dam during this earthquake is estimated to be

2m(82) [ o s o 2( 82 )2 :l—l/z - 2 .
,-»(0.42),.;..(' AL e B = C @)

R

&
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i.e., smaller by only about 0.84% than the value 359 m /s derived previously
from Eq. 16. i

The natural periods of the two higher symmetric modes are now expected
to be [Fig. 6(a)] :

T, ~—u 0.27 sec (464)
e 5 - = a
158 |
T, =—u 0.19 sec | (46b)
=St —1.' D S T B e . o R ey | e e BN (NS AN
Y R 2

compared with the values of 0.25 sec and 0.16 sec derived from Fig. 2(b).
Finally, the peak accelerations at points 2 and 3 are reestimated on the basis
of the same, aforementioned assumptions, i.e., only three modes participate
in the motion; the corresponding three spectral accelerations are the same. The
results are displayed in Table 2 for all three rules of combining modal maxima.
The agreement of the predicted peak acceleration ratios with the observed value
of 2.34 clearly demonstrates that inhomogeneity (of the form described by Egs.
33 or 34) has been the primary factor that caused the high amplification of
the motion near the top of the dam. Also shown in this table is the prediction
of the peak values and their ratio under the assumption that the spectral
acceleration, S,, of the second and third higher modes is two times larger than
the spectral acceleration of the fundamental mode. The result (AR = 3.57 >
2.34) further supports the assumption of not very different S, values for the
three modes. Thus, it appears that the homogeneous theory cannot even roughly
explain the observed distribution of accelerations along the height of the dam.
The superiority of the inhomogeneous theory, in this respect, is clear. Whether
or not the theory will always yield results comparing as favorably with reality
as in this single case, remains to be seen. The reader is cautioned, nevertheless,
that factors other than those accounted for by the theory, such as the nonrect-
angular geometry of the canyon and the nonlinear soil deformations during
strong, earthquake-induced vibrations, may also play a predominant role in certain
cases. Their effect should, therefore, at least qualitatively be assessed when
studying the longitudinal as well as the lateral vibrational behavior of earth
and rockfill dams. ' ’ '

Summary anp CoNCLUSIONS

Longitudinal vibrations of embankment dams are of concern in geotechnical
engineering since they can cause transverse cracking at the abutment dam or
the dam-outlet works interfaces. Such cracking is quite dangerous as it may
allow water to flow through the dam and thus lead to piping failure. '_

Free and forced longitudinal vibrations of embankment dams in a rectangular
canyon have been studied with a method that accounts for both shear and
dilatational deformations and models the dam as a linear homogeneous medium.
Presented numerical results demonstrate the effect of the length and height
of the dam on its natural frequencies and its modal displacement and strain
shapes. The method has been successfully evaluated by comparing the predicted
natural frequencies for the Santa Felicia Dam with the observed predominant



40 JANUARY 1981 GT1

frequencies of the amplification spectra obtained from recorded motions on
this Dam during two earthquakes (1).
- Failure of the method to explain the observed sharp increase of the motion
near the crest of the Kiseneyama rockfill dam in Japan during a moderate
earthquake (9) motivated the study of the importance of soil inhomogeneity.
An approximate method has thus been developed that considers the shear modulus
in the dam as increasing with the 2/3 power of depth, a variation that has
been confirmed from in situ measurement in several dams (1,2,5,6). This simple
“inhomogeneous’’ method is negligibly different from the ‘‘homogeneous’’ theory
when natural frequencies are compared. It yields, however, mode shapes that
exhibit a sharp attenuation with depth near the crest, and, consequently, it
explains very well the observed behavior of the Kisenyama Dam.

In conclusion, it appears that additional theoretical and, even more, experimen-
tal research may be needed in order to develop reliable methods of design
of embankment dams to resist longitudinal vibrations.
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